Удельный импульс тяги ракетного двигателя. В погоне за удельным импульсом

1. Формула Циолковского

гдеW- эффективная скорость истечения,Q Т - вес заряда,q к =Q 0 -Q T - сухой вес ракеты

2. Уравнение тяги

г
деG– весовой секундный расход.

Это выражение определяет теоретическое значение тяги (расчётное) её ещё называют идеальной тягой.

В инженерной практике наряду с прямым расчетом тяги есть способ расчета


, гдеR уд =R/G– удельная тяга – главная энергетическая характеристика РДТТ,W а – эффективная скорость истечения продуктов сгорания из сопла. Но т.к. на практике опытное определение удельной тяги РДТТ затруднено в связи со сложностью измерения расхода н.с., то взаменR уд целесообразнее вводить в рассмотрение характеристику –удельный импульс .

Вначале суммарный импульс

У
дельным (единичным) импульсом ДУ называется отношениеI  за полное время работы к общей массе топлива.

Ф
ормула Циолковского:

W е – эффективная скорость истечения;

Q T – вес топлива;

Q 0 – стартовый вес ракеты.

Температура горения топлив: 2500º К - БТТ; 3300º К – СТТ.

Характеристики ДУ:

 = Q к /Q т – коэффициент весового совершенства;

 v =W т /W к.с. – коэффициент объемного заполнения;

 эф =Q пол /Q дв – коэффициент эффективности;

Q пол – вес полезного груза, поднимаемого данным двигателем на определенную высоту;

Q дв – вес двигателя.

Основной показатель качества: удельная тяга.

Коэффициент энерговооружённости:
= 0.35 - 0.40.

3.Термодинамический расчет процессов в камере. Основные термодинамические характеристики топлива, порядок их определения.

Исходные данные :; состав топлива (;;;); энтальпия топлива ().

(Массовая доля i-го элемента:
; где- атомная массаi-го эл-та;- кол-во атомов;M- молярная масса).

1) Молярная масса

2) Парциальное давление в нулевом приближение

3) Температура в КС в 1-ом приближение:

4) Константы химического равновесия

5) Энтальпия

6) Стандартная энтропия

7) Изобарная теплоёмкость

8) Решаем системы и определяем

9) Молярная масса продуктов сгорания; молярная масса камеры:

10) Энтальпия ПС;

11) Сравнение и; перебор температур осуществляется пока не станет

12) Газовая константа

13) Плотность ПС;

14) Изобарная теплоёмкость ПС;

15) Изохорная теплоёмкость (формула Майера):

16) Показатель адиабаты:

17) Скорость звука в камере:

18) Удельный импульс давления (характеристическая скорость):

;
;

19) Состав ПС:

20) Энтальпия составляющих:

21) Энтропия:

Основные термодинамические характеристики топлива: состав топлива (;;;);энтропия.

(Евграшин: молекулярный вес; газовая постоянная; показатель адиабаты; сила пороха).

5.Определение газодинамических параметров течения в сопле с помощью газодинамических фнункций.

Статические параметры потока связаны с параметрами торможения некоторыми повторяющимися комплексами, зависящими от kи, эти комплексы называются газодинамическими комплексами:();();(). (формулы можно посмотреть в вопросе №32)

, где Т * - температура камеры.

,

,

();();() – основные газодинамические функции. Их преимущество в том, что удобно решать обратные задачи.

- связь газодинамических функций.

При малых скоростях движения основные газодинамические функции близки к 1. Т.е. статические параметры потока практически равны параметрам торможения. При придельной скорости движения газа= max , статические параметры становятся равны нолю, а это значит и основные газодинамические функции равны нолю.

q),y() – расходные функции.


- безразмерная плотность потока.

Максимальная плотность тока всегда будет наблюдаться в критике.

Удельный импульс или удельная тяга - показатель эффективности ракетного двигателя. Иногда оба термина используются как синонимы, имея в виду, что это, фактически, одна и та же характеристика. Удельная тяга применяется обычно во внутренней баллистике, в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду.

Определения

характеристика реактивного двигателя, равная отношению создаваемого им импульса к расходу топлива. Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют так же эффективной скоростью истечения.

Удельная тяга - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива. При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах. Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения.

Формула приближенного расчета удельного импульса для реактивных двигателей на химическом топливе выглядит, как:

где T k - температура газа в камере сгорания; p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; y - молекулярный вес газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере. Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс.

По сценарию фильма и по книге — он снабжён высокоимпульсными ионными двигателями.

Нынешняя ситуация с освоением космического пространства в чём-то похожа на середину XIX века, когда испытанные и проверенные временем технологии парусного флота вдруг оказались не более, чем устаревшими артефактами прошлой эпохи. Когда блистательный русский Черноморский флот, ещё недавно одержавший победу над турками при Синопе, вдруг оказался заперт в гавани Севастополя соединённой эскадрой союзников, а чайные клиперы на «ревущих сороковых», «неистовых пятидесятых» и «пронзительных шестидесятых» сменили юркие китобойные судёнышки, использовавшие первые паровые двигателя.

Тогда оказалось, что вопрос постоянства хода и неподверженности стихии для морского флота встал гораздо острее и насущнее, нежели вариант обуздания силы ветра и демонстрации рекордов скорости последними «Катти Сарк». Тихоходные и неповоротливые, но независимые от силы ветра пароходы всего лишь за неполные полвека окончательно вытеснили парусники на обочину морского дела, оставив за ними роль учебных судов и музеев.

Это была одна из самых радикальных революций в морском деле.
Следующий эволюционный шаг, отказ от использования топлива, как такового и переход на ядерную энергию в морском флоте так и не произошёл: атомные реакторы остались уделом лишь военно-морского флота ведущих мировых держав и «фирменным знаком» российского арктического ледокольного флота.

Похожая ситуация сейчас разворачивается и в освоении космоса. «Грести под парусами» химического топлива дальше в открытый космос уже просто невозможно — но вот на что поменять старые и проверенные химические ракеты — по-прежнему является вопросом конструктурских работ и инженерных изысканий.


Во-первых, надо сказать, почему человечество столь нежно полюбило ракеты с химическим топливом.
Надо сказать, что это скорее был «брак по расчёту», нежели какой-то «любовный союз». Ракета с химическим топливом и была, и есть лишь одним из немногих вариантов оторвать хоть что-то от поверхности нашей Земли. Для ракет, стартующих с земной поверхности, существенной является гравитационная помеха, о неизбежности которой я уже как-то говорил .

Масса двигателей, о которых я расскажу дальше по тексту статьи, гораздо больше подходят для условий космоса, но они практически бесполезны для старта с Земли — их тяга гораздо меньше их собственного веса, не говоря уже о массе потребного для них топлива или весе полезной нагрузки. В результате соотношение реактивной тяги двигателей (T) к массе всей ракеты (W) у таких двигателей меньше единицы (T/W<1) и ничего поднять с поверхности Земли они не могут.

Стендовые испытания двигателя J-2X, аналога двигателя J-2 лунной ракеты «Сатурн-V». Именно этот двигатель отправлял «Аполлоны» у Луне. Но это было, в общем-то, вынужденное решение.

Однако, в реальности физики, химии и матераловедения достаточно сложно построить двигатель и с высокой удельной тягой, и с высоким удельным импульсом.
И, если понятие «тяги» нам интуитивно понятно (ну можешь поднять 200 килограммовую штангу — у тебя хорошая «тяга», а не можешь — так, задохлик. В общем, всё как у людей), то понятие «удельного импульса» всё же лучше объяснить.
Если тяга — это условная «сила» двигателя, то удельный импульс — это, скорее, его «выносливость», то есть возможность достаточно долго сообщать полезной нагрузке дополнительный импульс на ограниченных запасах топлива.

Измеряется удельный импульс или в секундах (если использовать «техническую» систему единиц МКГСС) или в метрах в секунду (если использовать «научную» систему единиц СИ).
Различается и физический смысл «секунд» (как единиц измерения времени) и «метров в секунду» (как единиц измерения скорости), хотя он описывает одни и те же параметры условного реактивного двигателя, хоть и с разных сторон.

В случае выражения удельного импульса двигателя в секундах получается, что «удельный импульс — это количество секунд , которое данный двигатель проработает на 1 килограмме топлива, создавая тягу в одну килограмм-силу» (МКГСС).
Если же вы выражаете удельный импульс двигателя в метрах в секунду, то у вас получается более сложный вывод, основанный на утверждении о том, что «удельный импульс — это отношение тяги двигателя в ньютонах к секундному расходу массы топлива» (СИ).
В системе СИ размерность ньютона выражается как кг-м/c 2 и после сокращения с дополнительными кг/c в знаменателе вы получите размерность скорости — метры в секунду .
Интересно, что получившееся в итоге значение скорости для удельного импульса будет практически строго соответствовать скорости истечения продуктов сгорания из сопла любого двигателя. Так, например, удельный импульс современных жидкостных реактивных двигателей (ЖРД), составляющий около 450 секунд, соответствует скорости истечения рабочего тела (продуктов сгорания) в 4500 метров в секунду.


Испытания водородного ЖРД. Скорость истечения продуктов сгорания — около 4500 м/c, удельный импульс — около 450 секунд.

При этом, что важно, в отличии от выражения его в метрах в секунду, в случае задания вами удельного импульса в секундах он никак не оказывается связан с фактическим временем работы двигателя. Он лишь показывает удельный расход топлива двигателем, который может работать, в зависимости от наличия топлива, как дольше времени удельного импульса, так и меньше его.

На первый взгляд, скорость истечения рабочего тела в 4500 метров в секунду (13М) — это в тринадцать раз больше скорости звука на уровне моря (340 м/с). Громадная скорость для нашего обыденного восприятия и именно поэтому все сопла ЖРД делают расширяющимися, сверхзвуковыми соплами Лаваля.

Выше скорости истечения в паре «водород-кислород» получали только на весьма экзотической троице «литий-водород-фтор» ещё в 1968 году . Но прибавка к удельному импульсу (542 секунды) и скорости истечения (5 320 м/сек) на таком токсическом и взрывоопасном топливе была очень незначительной, в силу чего от использования трёхкомпонентного топлива с фторным окислителем в итоге отказались.

Ещё более «тупыми» и «невыносливыми» оказываются (по сравнению с ЖРД) ракетные двигатели на твёрдом топливе (РДТТ). Эти усовершенствованные пороховые шутихи оказываются «спринтерами с коротким дыханием» — большинство существующих РДТТ имеют удельный импульс в районе 250-270 секунд, что соответствует скорости истечения продуктов сгорания всего в 2500-2700 м/c. Зато РДТТ могут обеспечивать громадную начальную тягу, в силу чего их и используют как стартовые ускорители.


Наземные испытания стартового ускорителя «Спейс Шаттла». Пламени выше крыши, тяги — завались, а удельного импульса — чуть-чуть.

Но много это или мало — 4500 метров в секунду или 450 секунд?
Даже для старта с Земли на околоземную орбиту с использованием одноступенчатого вывода (по-английски это называется SSTO — single stage to orbit) этого оказывается сугубо недостаточно. Приходится мастерить различные многоступенчатые схемы, в результате чего современные ракеты выводят на орбиту грузы в составе двух, а иногда — и трёх ступеней.

При этом все нынешние идеи «допилить химический паровоз в стремительную сверхсветовую ракету» всё равно упираются в ограниченность возможностей РДТТ и ЖРД и в пресловутую формулу Циолковского, в которую удельный импульс входит в качестве множителя:

Здесь I — тот самый удельный импульс двигателя.
Поскольку он связан с отношением начальной (M 1 ) и конечной (М 2 ) масс летательного аппарата через натуральный логарифм, то получается, что увеличение удельного импульса двигателя в 2 раза при заданной конечной скорости уменьшает в те же два раза натуральный логарифм отношения M 1 к М 2 или же, чтобы было понятнее, изменяет соотношение M 1 к М 2 в виде второй степени (или квадратного корня) от изначального их соотношения.
Поскольку задаваемая зависимость у нас степенная, различия по удельному импульсу в 4 или 8 раз уже зададут более высокие степени и корни, в результате чего соотношение M 1 к М 2 для двигателей, отличающихся по удельному импульсу в 4 и в 8 раз, уже будет составлять четвёртую или восьмую степень оригинального соотношения, соответственно.


«Ядерный космолёт» МГ-19 — птица, опередившая своё время.

Пока же мы плотно сидим на химическом топливе для ЖРД и РДТТ наших ракет — себестоимость наших грузов даже на низкой околоземной орбите будет составлять тысячи долларов за каждый килограмм груза.

Но какого рода двигатели нам нужны, если вы собрались лететь не просто на околоземную орбиту, а к Марсу или к Луне? И если мы уже столь высоко ценим каждый килограмм груза на низкой околоземной орбите и слабо представляем себе варианты выхода из этого порочного круга?

Отвечу: нам нужен двигатель гораздо более высокоимпульсный, нежели химические двигатели наших современных, «земных» ракет.
Вот вам пример того, как натуральный логарифм в формуле Циолковского влияет на соотношение масс и на общую массу будущего марсианского корабля, в случае использования им различных двигательных систем:


Сравнение различных вариантов марсианского транспортного корабля: на химическом топливе, пара «водород-кислород» (5900 тонн, 460 секунд удельного импульса, 4600 м/с истечения), ядерный твердотельный двигатель (3500 тонн, 950 секунд удельного импульса, 9500 м/c истечения) и с электрическим ракетным двигателем (250 тонн, 3000-10000 секунд удельного импульса, скорость истечения 30-100 км/c).

Как вы видите, вариант марсианской эпопеи на химическом горючем практически нереален: если принять в качестве допущения, что на химическом топливе обеспечат нам себестоимость грузов на низкой околоземной орбите в 1000 долларов за килограмм, то 5900 тонн марсианского корабля обойдутся Земле в 5,9 миллиардов долларов только в стоимости вывода на орбиту (без стоимости самого корабля и НИОКР по нему).
А выводить его надо будет доброй полусотней запусков уникальных и сверхтяжёлых ракет.

Не сильно спасает ситуацию и межпланетный корабль с твердотельным ЯРД, над разработкой которого США и СССР в 1960е-1970е годы.
Полученный тогда на американском проекте NERVA и в испытаниях советского РД-0410 удельный импульс в районе 850-950 секунд, конечно, экономит вес марсианского корабля, но всё равно заставляет думать минимум о тридцати запусках тяжёлых ракет носителей и длительной сборке корабля на орбите.

И, наконец, различные концепции электрических ракетных двигателей с их возможными импульсами от 3000 до 30 000 секунд, всё же дают нам достаточно оптимизма в вопросе будущего освоения Солнечной системы. Да, не , и не с прямоточным термоядерным ракетным двигателем (ТЯРД), но всё-таки — реальный корабль, массой всего лишь в 250 тонн, который уже можно собрать на орбите Земли, даже опираясь на наши несовершенные химические ракеты, с мощными, но слабоимпульсными ЖРД и РДТТ.


Выбор источника энергии двигателей, между солнечными батареями и ядерным реактором для будущего марсианского корабля — пока что открыт. Но вот даже к Юпитеру уже, скорее всего, надо лететь с реактором на борту.

Каким из многих видов электрических ракетных двигателей будет снабжён будущий марсианский транспортный корабль — пока что вопрос открытый.
Если в качестве источника электроэнергии на борту, в общем-то, есть только две возможности: солнечные батареи и ядерный реактор, то в качестве двигателей могут использоваться очень разные высокоимпульсные электрические ракетные двигателя. Это и ионные двигатели, и плазменные (к которым относится и уже упомянутый по ссылке VASIMR), и различные варианты электростатических или электротермических двигателей.

Все эти двигатели уже обеспечивают удельный импульс от 3 000 до 10 000 секунд, а некоторые проекты обещают и 30 000 секунд удельного импульса, что соответствует скорости истечения рабочего тела в безумные 300 километров в секунду.

В прошлом году сообщено , что самые мощные и тяговооружённые на сегодняшний день в семействе электрических ракетных двигателей ионные двигатели перешагнули рубеж в 10 000 секунд, показав удельный импульс в 14 600 секунд.
Неизвестно, насколько ресурсными оказались эти двигатели, но, в любом случае, новости об совершенствовании «ионников» не могут не радовать.


В ионном двигателе нет брутальности ЖРД или РДТТ, но из его зрачка на вас смотрит вся Солнечная система. НАША система.

Что приятно, успехи в деле испытания ионных двигателей есть и в России.

О параметрах этих изделий можно судить по публикации в журнале «Труды МАИ» (номер 60 за декабрь 2012 год), в котором были изложены некоторые параметры как самих ионных двигателей, так и снабжаемых ими перспективных космических аппаратов.

Описанный там ионный двигатель ВЧИД-45 (который и был, скорее всего, испытан на полигоне КБХА) обладает следующими параметрами: номинальная мощностью 35 кВт, тяга 760 мН (0,076 кг) и удельным импульсом до 7000 секунд (скорость истечения ионов — 70 км/c).
По сравнению с уже испытанными в космосе ионными двигателями, ВЧИД где-то на порядок мощнее — самый мощный ионный двигатель, работавший в космосе, имел тягу в 91 мН и был установлен на американском исследовательском зонде «Дип Спейс-1» (Deep Space-1).

Планируемый ресурс двигателя был заявлен, как 50 000 часов, что и есть главным прорывом проекта: до сих пор ионные двигатели страдали от быстрой деградации ускоряющих ионы решёток и электродов, которые просто «съедало» набегающим потоком высокоэнергетических ионов.

Питать ионные двигатели энергией должна бортовая ядерная энергетическая установка (ЯЭУ) мощностью 1 МВт, которая сможет обеспечить электроэнергией кластер из тридцати таких двигателей.

В перспективе «Роскосмосом» рассмотривались три варианта буксиров, снабжаемых ионными двигателями: «лунный грузовик» с ядерной энергетической установкой мощностью в 1МВт и марсианские буксиры для пилотируемых миссий с ЯЭУ мощностью в 2 и в 4 МВт.


В 2003-2005 годах НАСА разрабатывала корабль ЯЭУ и с ионными двигателями в рамках проекта «Прометей». Мощность бортовой ЯЭУ «Прометея» должна была составить 250 кВт. Нетрудно посчитать, что «лунный грузовик» от «Роскосмоса» должен быть, как минимум, вчетверо мощнее.

«Лунный грузовик» с ЯЭУ мощностью 1 МВт на платформе с четырьмя кластерами по десять двигателей ВЧИД-45 в каждом (общая массадвигательной установки при этом составляет 5.7 тонны) сможет обеспечить посадку на Луну модуля массой в 25 тонн.
За время активного существования «лунный грузовик» сможет осуществить минимум пять транспортных операций с перелетом с низкой геоцентрической орбиты (высотой в 800 км) на низкую селеноцентрическую орбиту (высотой в 100 км) с общей грузоподъемностью на низкой селеноцентрической орбите в 128,5 тонны (масса «грузовика», топлива и полезной нагрузки) и с расходом рабочего тела порядка 10,8 тонн на каждый перелет туда и обратно.

Для сравнения — при использовании классической ракеты на химическом топливе (пара водоро-кислород, ракета «Сатурн-V», программа «Аполлон») с низкой околоземной орбиты стартовала конструкция весом в 145 тонн, на орбиту полёта к Луне выводилось 46 тонн, лунный посадочный модуль весил 15 тонн, а возвращаемая капсула «Аполлона» весила всего 5 тонн).

Для марсианских версий буксиров пока что есть только общая оценка: их стартовая масса должна составить около 215 тонн, а время полета туда и обратно составит два с половиной года.

В публикации указано, что двигатель ВЧИД может быть смаштабирован и на другие номиналы, если есть потребность в увеличении тяги, если количество двигателей в кластере двигательной установки должно быть уменьшено. Например, двигатель может быть разработан на тех же принципах, если потребуются уровни мощности на уровне 79 кВт или 105 кВт. В этом случае тяга двигателя будет составлять 1.52 Н и 2.27 Н, соответственно. Удельный импульс может быть повышен с 6880 с до 7120 с или 7320 с, а общий КПД системы — с 78.6 % до 81.3 % или даже 83.5 %. Однако, стоимости разработки и квалификации опытных образцов при этом возрастут примерно пропорционально третьей степени диаметра двигателя.

В общем, всё только начинается...

Гордые парусники ещё бороздят просторы наших «ревущих сороковых», но где-то, в тиши кабинетов и лабораторий уже рисуют чертежи стальных китобоев с паровым двигателем, которые позволят будущему Ахаву догнать своего Моби Дика...

Удельный импульс

Уде́льный и́мпульс или уде́льная тя́га (англ. specific impulse ) - показатель эффективности ракетного двигателя. Иногда оба термина используются как синонимы , имея в виду, что это, фактически, одна и та же характеристика. Удельная тяга применяется обычно во внутренней баллистике , в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду .

Определения

Уде́льный и́мпульс - характеристика реактивного двигателя , равная отношению создаваемого им импульса (количества движения) к расходу (обычно массовому, но может соотноситься и, например, с весом или объёмом) топлива. Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют так же эффективной (или эквивалентной) скоростью истечения .

Уде́льная тя́га - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду (м/с = Н·с/кг = кгс·с/т.е.м.) и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива (или тягу в 1 кгс, истратив при этом 1 т.е.м. топлива). При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²).

Формула приближенного расчета удельного импульса (скорости истечения) для реактивных двигателей на химическом топливе выглядит, как:

где T k - температура газа в камере сгорания (разложения); p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; y - молекулярный вес газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере (обычно u ≈ 15 ). Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс .

Сравнение эффективности разных типов двигателей

Удельный импульс является важным параметром двигателя, характеризующим его эффективность. Эта величина не связана напрямую с энергетической эффективностью топлива и тягой двигателя, например, ионные двигатели имеют очень небольшую тягу, но благодаря высокому удельному импульсу находят применение в качестве маневровых двигателей в космической технике.

  • Можно отметить юмористический момент связанный с данной формулой: так как она не имеет собственного названия, специалисты обычно называют ее «Ы-формулой» - в кинокомедии «Операция «Ы» и другие приключения Шурика » студенты, пишущие вывод формулы на полу коридора, выводят именно эту формулу

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Удельный импульс" в других словарях:

    Ракетного двигателя, показатель эффективности ракетного двигателя; идентичен удельной тяге (См. Удельная тяга) … Большая советская энциклопедия

    удельный импульс тяги ЖРД (камеры ЖРД) - удельный импульс двигателя (камеры) Отношение тяги ЖРД (камеры ЖРД) к массовому расходу топлива ЖРД (камерой ЖРД). Примечания 1. Удельный импульс тяги ЖРД (камеры ЖРД) измеряют в пустоте и на земле. 2. Удельный импульс тяги ЖРД (камеры ЖРД) равен …

    Ракетного двигателя, удельный импульс ракетного двигателя, отношение тяги ракетного двигателя к секундному массовому расходу рабочего тела (производная от импульса тяги по расходуемой массе в данном интервале времени). Выражается в Н(·)с/кг = м/с … Энциклопедия техники - объемный удельный импульс двигателя (камеры) Отношение тяги ЖРД (камеры ЖРД) к объемному расходу топлива ЖРД (камерой ЖРД). Примечание Объемный удельный импульс тяги ЖРД (камеры ЖРД) равен также производной от импульса тяги ЖРД (камеры ЖРД) по… … Справочник технического переводчика

    Импульс (лат. impulsus удар, толчок, побуждение): В Викисловаре есть статья «импульс» … Википедия

    - (a. explosion impulse, blast surge; н. Explosionsimpuls; ф. impulsion explosive; и. impulso de la explosion) величина, характеризующая динамич. воздействие взрыва, численно равная произведению избыточного давления продуктов взрыва на… … Геологическая энциклопедия

    Осн. хар ка ракетного двигателя. Суммарный (полный) И. р. д. произведение ср. значения тяги на время работы в Нс. Удельный И. р. д. отношение тяги к секундному массовому расходу рабочего тела в Н*с/кг = м/с; на расчётном режиме работы двигателя… … Большой энциклопедический политехнический словарь


Эта статья - о характеристике реактивных двигателей. О понятии из взрывотехники см. Импульс взрыва.

Уде́льный и́мпульс - показатель эффективности реактивного двигателя. Иногда для реактивных двигателей используется синоним «удельная тяга » (термин имеет и другие значения), при этом удельная тяга применяется обычно во внутренней баллистике , в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду.

Энциклопедичный YouTube

    1 / 3

    ✪ РДМ-60-5 №36 (НН-Фруктоза-Сорбит-S-Fe2O3 61,4%-25%-8%-5%-0,6%)

    ✪ РДМ-60-10 №54 (НН-Сорбит-S-Fe2O3 64,35%-32%-3%-0,65%)

    ✪ РДМ-60-10 №51 (НН-Сорбит-S-Fe2O3 64,35%-32%-3%-0,65%)

    Субтитры

Определения

Уде́льный и́мпульс - характеристика реактивного двигателя , равная отношению создаваемого им импульса (количества движения) к расходу топлива (обычно массовому, но может соотноситься и, например, с весом или объёмом топлива). Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют также эффективной (или эквивалентной) скоростью истечения продуктов сгорания.

Уде́льная тя́га - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду (м/с = Н·с/кг = кгс·с/т. е. м.) и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива (или тягу в 1 кгс, истратив при этом 1 т. е. м. топлива). При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс) - это значение можно рассматривать как время, в течение которого двигатель может развивать тягу в 1 кгc, используя массу топлива в 1 кг (то есть весом 1 кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (принимаемое равным 9,80665 м/с² ) .

Формула приближённого расчёта удельного импульса (скорости истечения) для реактивных двигателей на химическом топливе выглядит как [прояснить (не указан комментарий) ]

I y = 16641 ⋅ T k u M ⋅ (1 − p a p k M) , {\displaystyle I_{y}={\sqrt {16641\cdot {\frac {T_{\text{k}}}{uM}}\cdot \left(1-{\frac {p_{\text{a}}}{p_{\text{k}}}}M\right)}},}

где T k - температура газа в камере сгорания (разложения); p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; М - молекулярная масса газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере (обычно u ≈ 15 ). Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс .

Сравнение эффективности разных типов двигателей

Удельный импульс является важным параметром двигателя, характеризующим его эффективность. Эта величина не связана напрямую с энергетической эффективностью топлива и тягой двигателя, например, ионные двигатели имеют очень небольшую тягу, но благодаря высокому удельному импульсу находят применение в качестве маневровых двигателей в космической технике.

Характерный удельный импульс для разных типов двигателей
Двигатель Удельный импульс
м/с с
Газотурбинный реактивный двигатель [ ] 30 000(?) 3 000(?)