Техническое применение электролиза в медицине. Электролиз

Электролиз находит широкое применение в технике. Рассмотрим лишь некоторые примеры наиболее важных технических применений электролиза.

Гальваностегия - покрытие металлических изделий тонким слоем другого металла (никелирование, хромирование, серебрение, золочение и т. д.) с целью предохранения от окисления и придания изделию привлекательного внешнего вида. Предмет, подлежащий покрытию, тщательно очищают, хорошо обезжиривают и помещают в качестве катода в электролитическую ванну, содержащую раствор соли того металла, которым должен быть покрыт данный предмет (рис. 3.8). Анодом служит пластинка из того же металла. Для более равномерного покрытия обычно применяют две пластинки в качестве анода, помещая предмет между ними (см. рис. 3.8).

Гальванопластика - электролитическое изготовление копий с рельефных предметов (медалей, гравюр, барельефов и т. д.). С рельефного предмета делают восковый или иной слепок. Затем поверхность слепка покрывают тонким слоем графита, чтобы она стала проводящей. В таком виде слепок используется в качестве катода, который опускают в электролитическую ванну с раствором медного купороса. Анодом служит медная пластинка. Когда на слепке нарастет достаточно толстый слой меди, электролиз прекращают и воск осторожно удаляют. Остается точная медная копия оригинала.

В полиграфической промышленности такие копии (стереотипы) получают с оттиска набора на пластичном материале (матрица), осаждая на матрицах толстый слой железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров. Если раньше тираж книги ограничивался числом оттисков, которые можно получить с одного набора (при печатании набор стирается), то использование стереотипов позволяет значительно увеличить тираж.

Правда, в настоящее время с помощью электролиза получают стереотипы только для книг высококачественной печати и с большим числом иллюстраций.

Осаждая металл на длинный цилиндр, получают трубы без шва.

Процесс получения отслаиваемых покрытий был разработан русским ученым Б. С. Якоби, который в 1836 г. применил этот способ для изготовления полых фигур для Исаакиевского собора (в Санкт-Петербурге).

Рафинирование меди

Медь является лучшим материалом для изготовления проводников, но для этого она должна быть лишена каких бы то ни было примесей. Очищение меди от примесей называется рафинированием (очисткой) меди. Массивные куски (толстые листы) неочищенной меди, полученной при выплавке из руды, являются анодом, а тонкие пластинки из чистой меди - катодом. Процесс происходит в больших ваннах с водным раствором медного купороса. При электролизе медь анода растворяется; примеси, содержащие ценные и редкие металлы, выпадают на дно в виде осадка (шлама), а на катоде оседает чистая медь. Таким же образом производят рафинирование некоторых других металлов.

Получение алюминия

При помощи электролиза получают алюминий. Для этого подвергают электролизу не растворы солей этого металла, а его расплавленные оксиды.

В угольные тигли (рис. 3.9) насыпают глинозем (оксид алюминия Аl 2 O 3), полученный путем переработки бокситов - руд, содержащих алюминий. Тигель служит катодом. Анодом являются угольные стержни, вставленные в тигель. Сначала угольные стержни опускают до соединения с тиглем и пропускают сильный ток. Глинозем при прохождении тока нагревается и расплавляется. После этого угли поднимают, ток проходит через жидкость и производит электролиз. Расплавленный алюминий, выделяющийся при электролизе, опускается на дно тигля (катод), откуда его через особое отверстие выпускают в формы для отливки.

Доклад ученицы 10 кл. "Б"

школы 1257

Масоловой Елены по теме:

Применение электролиза.

Сущность электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод , а к положительному полюсу - анод , после чего погружают их в электролизер с раствором или расплавом электролита.

Электроды, как правило, бывают металлические, но применяются и неметаллические, например графитовые (проводящие ток).

На поверхности электрода, подключенного к отрицательному полюсу источника постоянного тока (катоде), ионы, молекулы или атомы присоединяют электроны, т. е. протекает реакция электрохимического восстановления. На положительном электроде (аноде) происходит отдача электронов, т. е. реакция окисления. Таким образом, сущность электролиза состоит в том, что на катоде происходит процесс восстановления, а на аноде - процесс окисления.

В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т. п., - так называемые вторичные процессы.

Металлические аноды могут быть: а) нерастворимыми или инертными (Pt, Au, Ir, графит или уголь и др.), при электролизе они служат лишь передатчиками электронов; б) растворимыми (активными); при электролизе они окисляются.

В растворах и расплавах различных электролитов имеются разноименные по знаку ионы, т. е. катионы и анионы , которые находятся в хаотическом движении. Но если в такой расплав электролита, например расплав хлорида натрия NaCl, опустить электроды и пропускать постоянный электрический ток, то катионы Na + будут двигаться к катоду, а анионы Cl – - к аноду. На катоде электролизера происходит процесс восстановления катионов Na + электронами внешнего источника тока:

Na + + e – = Na 0

На аноде идет процесс окисления анионов хлора, причем отрыв избыточных электронов от Cl – осуществляется за счет энергии внешнего источника тока:

Cl – – e – = Cl 0

Выделяющиеся электронейтральные атомы хлора соединяются между собой, образуя молекулярный хлор: Cl + Cl = Cl 2 , который и выделяется на аноде.

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl -> 2Na + + 2Cl – - электролиз -> 2Na 0 + Cl 2 0

Окислительно-восстановительное действие электрического тока может быть во много раз сильнее действия химических окислителей и восстановителей. Меняя напряжение на электродах, можно создать почти любой силы окислители и восстановители, которыми являются электроды электролитической ванны или электролизера.

Известно, что ни один самый сильный химический окислитель не может отнять у фторид-иона F – его электрон. Но это осуществимо при электролизе, например, расплава соли NaF. В этом случае на катоде (восстановитель) выделяется из ионного состояния металлический натрий или кальций:

Na + + e – = Na 0

на аноде (окислитель) выделяется ион фтора F – , переходя из отрицательного иона в свободное состояние:

F – – e – = F 0 ; F 0 + F 0 = F 2 0

Продукты, выделяющиеся на электродах, могут вступать между собой в химическое взаимодействие, поэтому анодное и катодное пространство разделяют диафрагмой.

Практическое применение электролиза.

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии , биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов.
Электролиз может осуществляться с растворимыми анодами - процесс электрорафинирования или с нерастворимыми - процесс электроэкстракции.
Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах.

В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки . Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми, либо переходят в электролит и удаляются.

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику.

¨ Гальваностегия (от греч. покрывать) – это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера.

Перед покрытием изделия необходимо его поверхность тщательно очистить (обезжирить и протравить), в противном случае металл будет осаждаться неравномерно, а кроме того, сцепление (связь) металла покрытия с поверхностью изделия будет непрочной. Способом гальваностегии можно покрыть деталь тонким слоем золота или серебра, хрома или никеля. С помощью электролиза можно наносить тончайшие металлические покрытия на различных металлических поверхностях. При таком способе нанесения покрытий, деталь используют в качестве катода, помещенного в раствор соли того металла, покрытие из которого необходимо получить. В качестве анода используется пластинка из того же металла.

¨ Гальванопластика – получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами.

С помощью гальванопластики изготовляют бюсты, статуи и т. д.

Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование "накладного" слоя никеля, серебра, золота и т. д.).


Кроме указанных выше, электролиз нашел применение и в других областях:

Получение оксидных защитных пленок на металлах (анодирование);

Электрохимическая обработка поверхности металлического изделия (полировка );

Электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);

-очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

Электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Электролиз – окислительно-восстановительные реакции, протекающие под действием постоянного электрического тока на поверхности электродов, помещенных в расплав или раствор электролита.

На отрицательно заряженном электроде – катоде – происходит процесс восстановления ионов или молекул электролита, а на положительно заряженном – аноде – процесс окисления. Последовательность протекания электродных реакций при электролизе зависит от многих факторов, основными из которых являются состав электролита, материал электродов, плотность тока, температура и др. Эти факторы влияют на величины потенциалов электродных систем, образующихся при электролизе, которые и будут определять возможность преимущественного протекания той или иной реакции. Для определения наиболее вероятных катодных и анодных реакций необходимо знать значения равновесных потенциалов и вид поляризационных кривых (см. 8.4) всех возможных электродных систем, которые могут возникнуть при электролизе.

Катодный процесс. Независимо от материала катода на нем будет протекать реакция восстановления только ионов металла () при электролизе расплавов и ионов металла или ионов водорода (молекул воды) при электролизе водных растворов электролитов.

Возможные катодные реакции при электролизе расплава электролита: восстановление катионов металла + ® .

Возможные катодные реакции при электролизе водного раствора: восстановление катионов металла + ® ,

восстановление ионов водорода 2H 2 O + 2ē ®H 2 ­ + 2OH - (pH ³7);

2H + + 2ē ®H 2 ­ (pH <7).

Последовательность протекания катодных реакций определяется величиной электродных потенциалов систем, которые возникают при протекании в системе тока. В первую очередь будут восстанавливаться более сильные окислители (Ox i ), т. е. ионы или молекулы с большим значением электродного потенциала ( > > >…> ).

Катодные процессы, протекающие при электролизе водного раствора электролита, условно можно разделить на три группы (рис.8.13).

Рис. 8‑13 Схема поляризационных кривых восстановления ионов металлаи молекул воды на катоде при рН =const

1. Восстановление только ионов металла: Me n + + ® Me 0 .

Данная реакция протекает при электролизе растворов, содержащих катионы, стандартные потенциалы которых больше потенциала стандартного водородного электрода, т. е. . Этому случаю на рис.8.13 соответствует ион металла . В системе, независимо от величины плотности тока и pH раствора, . При токе i потенциал катода равен j 1, а скорость выделения металла определяется величиной .

Если в растворе имеется несколько катионов, стандартные потенциалы которых положительны: , то среди них в первую очередь восстанавливаются те, у которых величина электродного потенциала больше.

При электролизе расплавов в системе не образуется водородный электрод и на катоде восстанавливаются металлы с любым значением стандартного электродного потенциала.

2. Восстановление только молекул воды или ионов водорода. При pH ³7 реакция записывается как 2H 2 O + 2ē ®H 2 ­ + 2OH - , а при pH <7 – 2H + + 2ē ®H 2 ­.

Данная реакция протекает при электролизе растворов, содержащих катионы, стандартные потенциалы которых существенно меньше потенциала стандартного водородного электрода: В. В этом случае, независимо от величины плотности тока и pH раствора, . Этому случаю на рис.8.13 соответствует ион металла . При токе i потенциал катода равен j 2, а скорость выделения водорода определяется величиной .

3. Если В, то, в зависимости от условий, в основном от плотности тока и от концентрации ионов водорода (pH электролита), возможно восстановление как ионов металла, так и молекул воды или ионов водорода.

Вероятность протекания этих реакций определяется величиной неравновесных электродных потенциалов водородного и металлического электродов. Этому случаю на рис.8.13 соответствует ион металла . При малых плотностях тока (i) и происходит восстановление преимущественно водорода. При больших плотностях тока(i >i p ) одновременно протекают обе реакции, причем скорость восстановления металла () больше, чем скорость восстановления водорода (). В точке р скорости восстановления металла и водорода равны. При больших величинах плотности тока >> , т. е. на катоде будет происходить преимущественно восстановление ионов металла.

Примечание .На катоде может происходить восстановление и других ионов или молекул окислителей, содержащихся в раствореOx + nē ® Red, например,

O 2 + 2H 2 О + 4ē ® 4ОH - .

Анодный процесс . В отличие от катода, на котором происходил процесс восстановления компонентов электролита, анодной реакцией может быть реакция окисления как ионов и молекул электролита, так и вещества самого анодаRed i ® Ox i + nē . Последовательность протекания анодных реакций определяется величиной электродных потенциалов, которые возникают при протекании в системе тока. В первую очередь будут окисляться частицы-восстановители (Red i ) с меньшим значением электродного потенциала ( < < <…< ).

Анодные процессы, протекающие при электролизе водного раствора электролита, условно можно разделить на три группы (рис.8.14).

1. Электролиз с растворимым анодом (активный анод) . Если материалом анода служит металл, потенциал которого меньше потенциала кислородного электрода или других частиц, присутствующих в электролите, то происходит окисление металла: Me 0 ® Me n + + . 1 . При токе i потенциал анода равен j 1, а скорость растворения металла определяется величиной .

2. Электролиз с нерастворимым анодом (инертный анод) . Если потенциал металла или любого другого проводника первого рода, используемого в качестве анода, больше потенциала кислородного электрода или других частиц, содержащихся в электролите, то материал анода не участвует в реакции окисления. В качестве инертных анодов используются графит, золото, металлы платиновой группы и другие материалы.


Рис. 8‑14 Схема поляризационных кривых окисления металла, молекул воды и анионов на аноде при рН =const

Если в водном растворе электролита присутствуют кислородосодержащие анионы, например SO 4 2- , NO 3 - , PO 4 3- и др., электродный потенциал которых больше потенциала кислородного электрода, то на аноде происходит только реакция окисления молекул воды (pH £7) или ионов ОH - (pH >7):

2H 2 O ® О 2 ­ + 4H + + 4ē при pH £7,

4ОH - ® О 2 ­ + 2H 2 O + 4ē при pH >7.

На рис.8.14 этому случаю соответствует поляризационная кривая 2 . При токе i потенциал анода равен j 2, а скорость выделения кислорода определяется величиной .

3. Электролиз с инертным анодом электролитов, содержащих анионы галогенводородных кислот (Cl - , Br - , I -). Вследствие высокой поляризации реакции выделения кислорода на аноде в первую очередь окисляются ионы галогена, образуется иод (I 2), бром (Br 2). В случае с хлорид-ионом при малых плотностях тока идет выделение кислорода, а при больших плотностях преимущественно окисляются ионы Cl - с образованием хлора:

2Cl - ® 2ē + Cl 2 ­

На рис.8.14 этому случаю соответствует поляризационная кривая 3 . При потенциале анода j 3 скорость выделения хлора определяется величиной , а кислорода .

Примечание .Фтор, вследствие большой величины электродного потенциала, при электролизе водных растворов не образуется, его получают при электролизе расплавов фторидов металлов.

Пример 1. Электролиз водного раствора сульфата натрия (Na 2 SO 4) концентрация 1 моль/л (pH =7) с инертным анодом (графит).

В растворе в результате диссоциации Na 2 SO 4 ↔ 2Na + + SO 4 2- образуются ионы Na + и SO 4 2- . При рН =7 равновесный потенциал водородного электрода равен В, а В. Поскольку , то на катоде происходит восстановление молекул воды с образованием водорода. Так как SO 4 2- –кислородосодержащий анион, то на аноде происходит окисление молекул воды с образованием кислорода:

катод (+) (С) 2H 2 O + 2ē ®H 2 ­ + 2OH -

анод (-)(С) 2H 2 O ® О 2 ­ + 4H + + 4ē

Суммарное уравнение протекающей в системе реакции:

4H 2 O+ 4ē +2H 2 O ® 2H 2 +4OH - + О 2 + 4H + + 4ē

2H 2 O® 2H 2 ­ + О 2 ­

При электролизе происходит разложение воды, растворенное вещество в этом случае не участвует в электрохимических реакциях. Его роль сводится к переносу зарядов в электролите (ток внутренней цепи).

Пример 2. Электролиз водного раствора нитрата серебра AgNO 3 с инертным анодом (графит).

В растворе в результате диссоциации AgNO 3 ↔ Ag + + NO 3 - образуются ионы Ag + и NO 3 - .

Поскольку стандартный электродный потенциал В положительный, то на катоде происходит восстановление ионов серебра. Так как NO 3 - – кислородосодержащий анион, то на аноде происходит окисление молекул воды с образованием кислорода:

катод (+)(С) Ag + + ē ®Ag

анод (-)(С) H 2 O ® О 2 ­ + 4H + + 4ē

Суммарное уравнение реакции, протекающей в системе:

4Ag + + 2H 2 O+ 4ē ® 4 Ag +О 2 + 4H + + 4ē

4AgNO 3 + 2H 2 O® 4 Ag + О 2 ­+4H NO 3

Пример 3. Электролиз водного раствора сульфата меди CuSO 4 с медными электродами.

В растворе в результате диссоциации CuSO 4 ↔ Cu 2+ + SO 4 2- образуются ионы Cu 2+ и SO 4 2- .

Стандартный электродный потенциал В положительный, поэтому на катоде происходит восстановление ионов меди. Так как медный электрод является активным (растворимым) анодом, то при электролизе происходит окисление меди:

катод (+) (Сu) Cu 2+ + 2ē ® Cu

анод (-)(Сu) Cu ® Cu 2+ + 2ē

Из суммарного уравнения протекающей в системе реакции:

Cu 2+ + 2ē + Cu ® Cu + Cu 2+ + 2ē

видно, что в этом случае образование новых веществ не происходит. При электролизе осуществляется перенос атомов меди с анода на катод.

Электролиз является основой различных технологических процессов, в частности:

При электролизе расплавленных соединений получают алюминий, магний, щелочные и щелочноземельные и другие химически активные металлы (электрометаллургия);

При электролизе водных растворов получают металлы, не загрязненные примесями: медь, никель, цинк, марганец (гидрометаллургия);

Электролиз водных растворов используют для получения на поверхности изделий металлических покрытий (гальваностегия) или точных металлических копий (гальванопластика);

Электролиз с растворимым анодом лежит в основе процессов рафинирования (очистки) металлов: меди, никеля, серебра;

Процессы анодного растворения используются для электрохимической обработки металлов: электрополирования, электро-фрезерования и др.

Электролизом получают различные химические вещества: хлор, водород и кислород, гидроксид натрия и др.

Контрольные вопросы.

1. Электрохимический процесс. Количественные соотношения между величиной тока и количеством реагентов.

2. Двойной электрический слой на границе «металл – электролит». Электродный потенциал. Уравнение Нернста.

3. Химический и концентрационный гальванические элементы: ЭДС, электродные реакции.

4. Скорость электрохимической реакции. Поляризация электродов.

5. Химические источники тока.

6. Электролиз расплавов и водных растворов электролитов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Муниципальное казённое общеобразовательное учреждение

«Средняя общеобразовательная школа №7»

Реферат по Физике на тему: «Применение электролиза»

Выполнила:

ученица 10 класса «А»

МКОУ «СОШ №7»

Солодовникова Дарья

Руководитель:

Яковлева Вера Егоровна

Изобильный,2017

Введение

Электролиз (от греч. «лизис» - разложение, растворение, распад) - это совокупность физико-химических явлений на находящихся в жидкости электродах при прохождении электрического тока. Например, погрузив в воду два электрода и подключив их к источнику постоянного тока, мы обнаружим, что вокруг электродов выделяются пузырьки - это газы водород и кислород. При их образовании уменьшается масса воды, то есть она разлагается на входящие в её состав элементы.(рис.1)Если электроды погружать не в воду, а в растворы или расплавы солей, кислот и щелочей, то можно наблюдать выделение других газов и даже твёрдых веществ, оседающих на поверхности электродов. По этой причине электролиз широко применяют в технике.

Электрометаллургия

Электролитическим путём в промышленности получают многие металлы: алюминий, медь, магний, хром, титан и др. Например, для получения чистого алюминия в специальную металлическую ванну вливают расплавленную при 900 °С руду, содержащую алюминий в химически связанном виде (обычно в виде оксидов). В ванну опускают угольные стержни, которые служат анодами, а сама ванна - катодом. При прохождении тока через расплав на дне ванны выделяется жидкий алюминий, который сливают через отверстие внизу ванны.

Рафинирование (очистка) металлов

В электротехнике благодаря хорошей электропроводимости наиболее широкое применение как проводниковый материал имеет медь. Медные руды, кроме меди, содержат много примесей, таких, как, например, железо, сера, сурьма, мышьяк, висмут, свинец, фосфор и т. п. Процесс получения меди из руды заключается в следующем. Руду измельчают и обжигают в особых печах, где некоторые примеси выгорают, а медь переходит в окись меди, которую снова плавят в печах вместе с углем. Происходит восстановительный процесс, и получают продукт, называемый черной медью, с содержанием меди 98--99%. Медь, идущая на нужды электротехники, должна быть наиболее чистой, так как всякие примеси уменьшают электропроводимость меди. Такая медь получается из черной меди путем рафинирования ее электрическим способом. Неочищенная медь подвешивается в качестве анода в ванну с раствором медного купороса. Катодом служит лист чистой меди. При пропускании через ванну электрического тока медь с анода переходит в раствор, а оттуда осаждается на катод. Электролитическая медь содержит до 99,95% меди. Медь в электротехнике применяется для изготовлений изолированных проводов, кабелей, обмоток электрических машин и трансформаторов, медных полос, лент, коллекторных пластин, деталей машин и аппаратов.

Аналогичным способом получают и другие чистые металлы - никель, свинец, золото Второе место после меди в электротехнике занимает алюминий. Сырьем для получения алюминия служат бокситы, состоящие из окиси алюминия (до 70%), окиси кремния и окиси железа. В результате обработки бокситов щелочью получается продукт, называемый глиноземом (Аl2O3).Глинозем с некоторыми добавлениями (для снижения температуры плавления) загружается в огнеупорную печь, стенки и дно которой выложены угольными пластинами, соединенными с отрицательным полюсом источника напряжения. Через крышку печи проходит угольный стержень, который служит анодом. Сначала опускают угольный анод, в результате чего возникает электрическая дуга, которая расплавляет глинозем. В дальнейшем происходит электролиз расплавленной массы. Чистый алюминий скапливается на дне сосуда, откуда его выливают в формы. Процентное содержание алюминия в металле достигает 99,5%. Для получения алюминия требуется большое количество электроэнергии. Поэтому алюминиевые заводы строятся около больших гидроэлектростанций с дешевой электроэнергией. Алюминий в электротехнике употребляется для изготовления проводов, кабелей, получения некоторых сплавов.

Медь, применяемая в электро- и радиотехнике для изготовления проводников, должна быть чистой, поскольку примеси уменьшают электропроводность. Для очистки меди от примесей в электролитическую ванну заливают раствор сульфата меди II (устаревшее название - медный купорос) и опускают две пластины: анод - толстую пластину из неочищенной меди и катод - тонкий лист из чистой меди. При пропускании электрического тока анод постепенно растворяется, примеси выпадают в осадок, а на катоде оседает чистая медь. Аналогичным способом получают и другие чистые металлы - никель, свинец, золото.

Гальваностегия

Для придания изделиям красивого внешнего вида, прочности или для

предохранения от коррозии, их покрывают тонким слоем какого-либо металла: никеля, хрома и др. Для этого изделие тщательно очищают, обезжиривают и помещают как катод в электролитическую ванну, содержащую соль того металла, которым желают покрыть. Для более равномерного покрытия полезно применять две пластины в качестве анода, помещая изделие между ними.

Гальванопластика

Это электролитическое осаждение металла на поверхности какого-либо предмета для воспроизведения его формы. Для этого с предмета сначала снимают слепок (из воска или гипса) и покрывают его токопроводящим слоем, например, слоем графита. Подготовленный таким способом предмет помещают в качестве катода в ванну с раствором соли соответствующего металла. При включении тока металл из электролита оседает на поверхности предмета. Гальванопластику используют для изготовления неограниченного числа точных копий того изделия, с которого был снят слепок.

Гальванополировка

Если резное металлическое изделие поместить в раствор электролита и включить ток, то наиболее сильное электрическое поле образуется у микроскопических выступов на поверхности этого изделия. Если оно подключено к «+» источника тока, то наиболее интенсивно ионы металла будут «вырываться» именно из выступов, и поверхность металла выровняется.

Электрофорез

Электрофорез (от греч. «форезис» - перенесение), это лечебная процедура. Электроды накладывают на тело человека. Между телом и электродом помещают бумагу или ткань, пропитанную электропроводящим лекарственным препаратом. При включении тока начинается движение заряженных частиц из бумаги или ткани в кожу, а затем в тело человека. Так происходит процесс ввода лекарств,скорость которого можно регулировать,

изменяя силу тока.

Извлечение металлов

Извлечение металлов первой и второй групп периодической системы осуществляется с помощью электролиза из расплавленных галогенидов этих металлов. Например, натрий получают электролизом расплавленного хлорида натрия в электролизере Даунса. Магний получают электролизом хлорида магния, который в свою очередь получают из доломита и морской воды.

Анодирование (анодное оксидирование)

электролиз оксидирование анодирование

Анодирование - способ получения оксидной пленки в жидких либо твердых электролитах.

При анодировании поверхность металла, которая окисляется, имеет положительный потенциал.

Анодирование применяется для получения защитных и декоративных слоев на поверхностях различных металлов и сплавов.

Анодное оксидирование наиболее часто применяется для получения покрытия на алюминии и его сплавах.

Слои, полученные на алюминии, обладают защитными, изоляционными, износостойкими, декоративными свойствами.

Плазменные методы оксидирования

Плазменное оксидирование проводят при низких температурах в плазме, содержащей кислород. Плазма образуется при помощи разрядов постоянного тока, СВЧ, ВЧ разрядов.Такое оксидирование применяется для получения оксидных слоев на поверхности кремния иполупроводниковых соединениях.

Также плазменным оксидированием повышают светочувствительность серебряно-цезиевых фотокатодов

Микродуговое оксидирование - метод получения многофункциональных оксидных слоев.

Данный способ позволяет наносить слои с высокими защитными, коррозийными, теплостойкими,изоляционными, декоративными свойствами. Внешний вид покрытия напоминает керамику.

Процесс микродугового оксидирования в большинстве случаев проводится в слабощелочных электролитах приподаче импульсного, либо переменного тока.

Оксидный слой приблизительно формируется на 70% вглубь основного металла.Толщина покрытия составляет около 200 - 250 мкм.Микродуговое оксидирование позволяет получать покрытия на деталях со сложным рельефом.Применяемые электролиты экологичны и не оказывают вредного влияния на окружающую среду.Применяется для формирования покрытий на магниевых и алюминиевых сплавах.

Полирование металлических изделий

Электрохимическая полировка поверхностей производится в электролитических растворах. Анодом в этом случае выступает изделие, которое погружается в ванну с электролитом. Под влиянием электрического тока происходит растворение металлов и образуется оксидная пленка небольшой толщины. Интенсивность процесса регулируется изменением плотности тока и напряжения.Состав электролита, его температура и режим полирования определяются в зависимости от металла, размеров и конфигурации изделия. Главное требование - устойчивость электролита и его способность сформировать защитную пленку с высоким сопротивлением электрическому напряжению.

Для изделий из черных металлов используются растворы с содержанием серной и фосфорной кислот, медные, латунные и стальные поверхности полируются в ортофосфорных электролитах, алюминий - в кислых и щелочных растворах, драгоценные металлы (серебро и золото) - в растворах с содержанием тиомочевины.

Электрохимическое окрашивание изделий из цветных металлов и их сплавов.?

Пассивируя металл, т. е. создавая оксидные или солевые пленки, можно проводить окраску или тонирование металлов. Толщина таких пленок соизмерима с длиной волны видимого света, поэтому цвет тонированной поверхности зависит от толщины покрытияи цвета металла. Для химического оксидирования с целью окраски широко используютперсульфатный раствор, а для электрохимического -- изделие делают анодом. В последнем случае говорят, что окрашивание проводят путем анодирования. Тонированию чаще всего подвергают изделия из меди и ее сплавов, а также из алюминия, олова, никеля.

Заключение

Актуальность электролиза объясняется тем, что многие вещества получают именно этим способом Получение неорганических веществ(водорода, кислорода, хлора, щелочей и т.д.) Получение металлов(литий, натрий, калий, бериллий, магний, цинк, алюминий, медь и т.д.) Очистка металлов (медь, серебро,…) Получение металлических сплавов Получение гальванических покрытий Обработка поверхностей металлов (азотирование, борирование, электрополировка, очистка) Получение органических веществ,электродиализ и обессоливание воды,нанесение пленок при помощи электрофореза.

Список литературы

1.Новошинский, Н.С. Новошинская.Химия

2. Г. Я. Мякишев, Б. Б. Буховцев Н.Н. Сотский.Физика 10 класс

Приложение

рис 5Размещено на Allbest.ru

...

Подобные документы

    Получение экспериментальных образцов матричных платформ оксида алюминия с упорядоченной структурой сквозной пористости при использовании раствора щавелевой кислоты и двухстадийного потенциостатического режима анодирования при заданных температурах.

    реферат , добавлен 25.06.2010

    Метод осаждения определяемого элемента путем электролиза на предварительно взвешенном электроде. Требования к электродам, применяемым в электрогравиметрии. Подчинение законам Фарадея. Электрохимическая поляризация. Электролиз в кулонометрической ячейке.

    реферат , добавлен 24.01.2009

    Условия, влияющие на самоорганизацию наночастиц. Свойства нанокристаллического магния, титана, их применение. Принцип работы наноразмерного электронного выключателя. Характеристика мономеров биомакромолекул: белков, нуклеиновых кислот и полисахаридов.

    контрольная работа , добавлен 20.12.2014

    Историческая справка. Положение меди в периодической системе Д.И. Менделеева. Распространение в природе. Получение, физические свойства, применение. Метод электролитического осаждения. Построение физико-математической модели. Определение характеристик.

    курсовая работа , добавлен 24.12.2005

    Свойства нанокристаллических порошковых материалов на основе тугоплавких соединений. Высокоэнергетические методы консолидации порошковых наноматериалов. Получение спеканием и свойства плотных образцов карбонитрида титана c нанокристаллической структурой.

    реферат , добавлен 26.06.2010

    Электрический ток в металлах, полупроводниках и электролитах. Зонная модель электронной проводимости металлов. Квантово-механическое объяснение сверхпроводимости в полупроводниках. Электрический ток в электролитах. Применение электролиза на производстве.

    презентация , добавлен 13.02.2016

    Растворимость водорода в аллотропической форме титана. Влияние водорода на механические свойства титана высокой чистоты. Классификация сплавов титана по легирующим элементам. Сущность механизма и признаки водородного охрупчивания титановых сплавов.

    реферат , добавлен 15.01.2011

    Электроток в растворе, упорядоченное движение заряженных частиц, электролитическая диссоциация. Направленное движение электронов источника электрической энергии. Электролитическое промышленное получение алюминия, гальваностегия и активность металлов.

    презентация , добавлен 26.03.2012

    Открытия явления электролиза. Сравнение первых гальванических элементов с современными батарейками ведущих фирм мира. Процесс электролиза в расплавах электролитов. Механизм электрического тока в жидких проводниках. Основные гальванические элементы.

    отчет по практике , добавлен 27.05.2010

    Принцип действия и разновидности лазеров. Основные свойства лазерного луча. Способы повышения мощности лазерного излучения. Изучение особенностей оптически квантовых генераторов и их излучения, которые нашли применение во многих отраслях промышленности.


Электролиз находит широкое применение в технике.

Очистка или рафинирование металлов . Процесс происходит в электролитической ванне. Анодом служит металл, подлежащий очистке, катодом - тонкая пластинка из чистого металла, а электролитом - раствор соли данного металла, например, при рафинировании меди - раствор медного купороса. В загрязненных металлах могут содержаться ценные примеси. Так, в меди часто содержится никель и серебро. Для того чтобы на катоде выделялся только чистый металл, необходимо учитывать, что выделение каждого вещества начинается лишь при некоторой определенной разности потенциалов между электродами, называемой "потенциалом разложения". При надлежащем ее выборе из раствора медного купороса на катоде выделяется чистая медь, а примеси выпадают в виде осадка или переходят в раствор.

Электрометаллургия . Некоторые металлы, например, алюминий, получают методом электролиза из расплавленной руды. Электролитической ванной и одновременно катодом служит железный ящик с угольным полом, а анодом - угольные стержни. Температура руды (около 900 °С) поддерживается протекающим в ней током. Расплавленный алюминий опускается на дно ящика, откуда его через особое отверстие выпускают в формы для отливки.

Гальваностегия - электролитический способ покрытия металлических изделий слоем благородного или другого металла (золота, платины), не поддающегося окислению. Например, при никелировании предмета он сам служит катодом, кусок никеля - анодом. Пропуская через электролитическую ванну в течение некоторого времени электрический ток, покрывают предмет слоем никеля нужной толщины.

Гальванопластика , или электролитическое осаждение металла на поверхности предмета для воспроизведения его формы, была изобретена в 1837 г. русским ученым Б. С. Якоби, предложившим использовать электролиз для получения металлических отпечатков рельефных предметов (медалей, монет и др.). С предмета снимают слепок из воска или вырезают выпуклое изображение на деревянной доске и делают его проводящим, покрывая слоем графита. Затем опускают слепок или доску в качестве катода в электролит. Анодом служит кусок металла, используемого для осаждения. Этим способом изготовляют, например, типографские клише.

Электролитическим путем получают тяжелую воду (D 2 O ), в которой атомы водорода заменены атомами его изотопа - дейтерия (D ) с атомной массой 2.

Все электрохимические процессы можно разделить на две противоположные группы: процессы электролиза, при которых под действием внешнего источника электроэнергии происходят химические реакции, и процессы возникновения электродвижущей силы и электрического тока вследствие определенных химических реакций.

В первой группе процессов электрическая энергия превращается в химическую, во второй ‒ наоборот, химическая ‒ в электрическую.

Примерами процессов обоих типов могут быть процессы, происходящие в аккумуляторах. Так, при работе свинцового аккумулятора генератора электрической энергии происходит реакция:

Рb + РbO 2 + 4Н + + 2SO 4 2- → РbSO 4 + 2Н 2 O.

Вследствие этой реакции освобождается энергия, которая и превращается в электрическую. Когда аккумулятор разрядится, его заряжают, пропуская через него электрический ток в обратном направлении.

В обратном направлении протекает и химическая реакция:

2РbSO 4 + 2Н 2 O → Рb + РbO 2 + 4Н + + 2SO 4 2- .

В этом случае электрическая энергия превратилась в химическую. Теперь аккумулятор снова имеет запас энергии и снова может разряжаться.

Все электрохимические реакции происходят при протекании электрического тока в цепи. Этот круг обязательно состоит из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках, как мы знаем, ток переносят электроны, в растворе электролитов ‒ ионы. Непрерывность протекания тока в цепи обеспечивается только тогда, когда происходят процессы на электродах, т.е. на границе металл ‒ электролит На одном электроде происходит процесс приема электронов ‒ восстановление, на втором электроде - процесс отдачи электронов, т.е. окисления.

Особенностью электрохимических процессов, в отличие от обычных химических, является пространственное разделение процессов окисления и восстановления. Из этих процессов, которые не могут происходить друг без друга, и состоит в целом химический процесс в электрохимической системе.

Если погрузить металлическую пластинку (электрод) в раствор электролита, то между пластинкой и раствором возникает разность потенциалов, которая называется электродного потенциала.

Рассмотрим причины его возникновения. В узлах кристаллической решетки металла содержатся только положительно заряженные ионы. Благодаря их взаимодействию с полярными молекулами растворителя, они отрываются от кристалла и переходят в раствор. Вследствие такого перехода в металлической пластинке остается избыток электронов, отчего она приобретает отрицательный заряд. Положительно заряженные ионы, которые перешли в раствор благодаря электростатическому притяжению, остаются непосредственно у поверхности металлического электрода. Образуется двойной электрический слой. Между электродом и раствором возникает скачок потенциала, который и называется электродным потенциалом.

Наряду с переходом ионов из металла в раствор происходить и обратный процесс. Скорость перехода ионов из металла в раствор V 1 может быть больше скорость обратного перехода ионов из раствора в металл V 2 (V 2 ˃ V 1).

Такая разница в скоростях приведет в результате к уменьшению количества положительных ионов в металле и увеличению их в растворе. Металлический электрод приобретает отрицательный заряд, раствор ‒ положительного.

Чем больше разница V 1 ‒V 2 , тем более негативным будет заряд металлического электрода. В свою очередь величина V 2 зависит от содержания ионов металла в растворе; большим их концентрациям соответствует большая скорость V 2 . Следовательно, с увеличением концентрации ионов в растворе уменьшается отрицательный заряд металлического электрода.

Если, наоборот, скорость перехода ионов металла в раствор будет меньше скорость обратного процесса (V 1 < V 2), то на металлическом электроде будет избыток положительных ионов, а в растворе ‒ их нехватка. В таком случае электрод вступит положительный заряд, а раствор ‒ негативного.

В обоих случаях разность потенциалов, которая возникает в результате неравномерного распределения зарядов, ускорять медленный процесс и тормозить быстрее. Вследствие этого наступит момент, когда скорости обоих процессов станут равными. Наступит равновесие, которое будет иметь динамичный характер. Переход ионов из металла в раствор и обратно будет происходить все время и в состоянии равновесия. Скорости этих процессов в состоянии равновесия будут одинаковыми (V 1p = V 2p). Величина электродного потенциала, которая хранится в состоянии равновесия, называется равновесным электродным потенциалом.

Потенциал, который возникнет между металлом и раствором, если погрузить металл в раствор, в котором концентрация ионов этого металла равна одному грамм-иона, называться нормальным или стандартным электродным потенциалом.

Если разместить нормальные потенциалы электродных реакций для различных металлов так, чтобы их алгебраические величины последовательно росли, то мы получим известный из общего курса химии ряд напряжений. В этом ряду все элементы размещены в зависимости от их электрохимических свойств, которые непосредственно связаны с химическими свойствами. Так, все металлы расположены в меди (т.е. с более негативными потенциалами), относительно легко окисляются, а все металлы, размещенные после меди, окисляются с достаточно большими трудностями.

К, Na, Са, Мg, А1, Мn, Zn, Fe,

Ni, Sn, Pb, Н2, Сu, Нg, Аg, Аu.

Каждый член ряда, как более активный, может вытеснять из соединений любого члена ряда, стоящего вправо от него в ряду напряжений.

Рассмотрим механизм действия гальванического элемента, схему которого представлен на рис. Элемент состоит из цинковой пластинки, погруженной в раствор сульфата цинка, и медной пластинки, погруженной в раствор сульфата меди.

Рис. Схема медно-цинкового гальванического элемента

Оба сосуды с растворами, которые называются полуэлементами, соединенные между собой электролитическим ключом в гальванический элемент. Этот ключ (стеклянная трубка, заполненная электролитом) позволяет ионам перемещаться из одного сосуда (полуэлемента) в другую. Вместе растворы сульфата цинка и сульфата меди не смешиваются.

Если электрическая цепь разомкнутое, то никаких изменений в металлических пластинках и в растворе не происходит, а когда замкнуть круг, то по кругу потечет ток. Электроны из места, где плотность отрицательного заряда выше (т.е. с цинковой пластинки), перемещаться в места с меньшей плотностью отрицательного заряда или к месту с положительным зарядом (т.е. к медной пластинки). Вследствие перемещения электронов равновесие на границе металл ‒ раствор нарушится. Избыток отрицательных зарядов в цинковой пластинке уменьшится, соответственно уменьшатся силы притяжения, и часть ионов цинка из двойного электрического слоя перейдет в общий объем раствора. Это приведет к уменьшению скорости процесса перехода ионов Zn 2+ из раствора в металл. Увеличится разница V 1 ‒V 2 (которая в состоянии равновесия равна нулю), и новое количество ионов цинка перейдет из металла в раствор. Это обусловит появление избытка электронов в цинковой пластинке, которые немедленно переместятся к медной пластинки, и опять все будет непрерывно повторяться. Вследствие этого цинк растворяться, а в кругу непрерывно протекать электрический ток.

Понятно, что непрерывное перемещение электронов от цинковой пластинки к медной возможно только тогда, когда они асимилируют на медной пластинке. Появление избытка электронов в медной пластинке приведет к перестройке двойного слоя. Отрицательные ионы SO 4 2- отталкиваться, а положительные ионы меди, которые есть в растворе, будут заходить в двойной электрический слой благодаря электростатическому притяжению, обусловленном появлением электронов. Скорость процесса перехода ионов в металлV 2 увеличится. Ионы Сu 2+ проникать в кристаллическую решетку медной пластинки, присоединяя электроны. Именно этот процесс ассимиляции электронов на медной пластинке обеспечит непрерывность процесса в целом.

Величина ЭДС Е равна разности электродных потенциалов Е 1 и Е 2 на электродах: Е = Е 1 ‒Е 2 .

Процессы, которые происходят на электродах, можно изобразить схемой: на грани цинковая пластинка ‒ электролит Zn ‒ 2е - = Zn 2+ , на грани медная пластинка электролит Сu 2+ + 2е - = Сu.

Как видим, процессы окисления цинка и восстановление меди разделены в пространстве, они происходят на разных электродах. В целом химическую реакцию, которая происходит в медно-цинковом элементе, можно записать в ионной форме так:

Zn + Сu 2+ = Zn 2+ + Сu.

Такая же картина будет наблюдаться и в том случае, когда обе пластинки будут заряжены отрицательно относительно раствора. Погрузим две медные пластинки в разбавленные растворы сульфата меди. Концентрация ионов меди в этих растворах С 1 и С 2 (С 2 > С 1). Предположим, что обе пластинки зарядятся негативно относительно растворов. Но пластинка А в сосуде с концентрацией раствора С 1 зарядится более негативно благодаря тому, что концентрация ионов меди в этом сосуде меньше, чем во второй сосуде, и соответственно скорость проникновения ионов Сu 2+ в кристаллическую решетку будет меньше. Если замкнуть круг, то электроны будут перемещаться от пластинки А, где их плотность больше, к пластинке В. На грани пластинки А с электролитом происходить процесс Сu° ‒ 2е - = Сu 2+ , на грани пластинки В с электролитом Сu 2+ + 2е - + Сu°.

Обе пластинки, как было уже отмечено, заряжены отрицательно относительно раствора. Но пластинка А заряжена отрицательно относительно пластинки В и поэтому в гальваническом элементе выполнять роль отрицательного электрода, а пластинка В ‒ положительного.

Величина ЭДС, равной разности электродных потенциалов, будет тем больше, чем больше разница концентраций ионов в растворах.

Зако́ны электро́лиза Фараде́я являются количественными соотношениями, основанными на электрохимических исследованиях, опубликованных Майклом Фарадеем в 1836 году.


© 2024, carexauto.ru - Открой свое дело на миллион - Бизнес. Выбор ниши. Заработок. Оборудование. Переработка