Реферат турбинные масла. Турбинные масла Смазка гидротурбин и гидроэлектростанций

Турбинные масла находят широкое применение при смазывании и охлаждении подшипников в различных турбогенераторах - паровых и газовых турбинах, гидротурбинах, турбонасосах. Их же используют в качестве рабочей жидкости в системах регулирования турбоагрегатов и промышленном оборудовании.

Какие имеет свойства?

Турбина представляет собой сложный механизм, с которым нужно бережно обращаться. Используемые турбинные масла должны отвечать целому ряду характеристик:

  • обладать антиокислительными свойствами;
  • защищать детали от отложений;
  • обладать деэмульгирующими свойствами;
  • быть стойкими к воздействию коррозии;
  • обладать низкой вспениваемостью;
  • быть нейтральными к деталям из металлов и неметаллов.

Все эти характеристики турбинных масел достигаются при производстве.

Особенности производства

Производство турбинных масел ведется из глубокоочищенных нефтяных дистиллятов, в которые добавляются присадки. Благодаря антиокислительным, антикоррозийным, противоизносным присадкам улучшаются их эксплуатационные характеристики. Из-за всех этих добавок важно выбирать масла в соответствии с инструкцией по эксплуатации конкретного агрегата и рекомендациями самого производителя. Если турбинное масло будет некачественным, агрегат попросту может выйти из строя. Для достижения высокого качества при производстве составов используются сорта нефти высокого качества, применяется глубокая очистка при переработке и введении композиций присадок. Все это в сочетании способно улучшить антиокислительные и антикоррозионные свойства масел.

Основные требования

Правила технической эксплуатации различных насосных станций и сетей говорят о том, что турбинное масло не должно содержать воду, видимый шлам и механические примеси. Согласно инструкции, также требуется контролировать противоржавейные свойства масла - для этого используются специальные индикаторы коррозии, расположенные в маслобаке паровых турбин. Если все-таки в масле появляется коррозия, необходимо ввести в него специальную присадку против появления ржавчины. Предлагаем обзор популярных марок турбинных масел.

ТП-46

Это масло используется для смазки подшипников и других механизмов различных агрегатов. Масло турбинное 46 показывает хорошие антиокислительные свойства. Для его создания используется сернистая парафинистая нефть глубокой селективной очистки. Использовать состав можно на судовых паросиловых установках и в любых вспомогательных механизмах. ТП-46 служит надежной защитой поверхностей деталей от коррозии, отличается высокой стабильностью против окисления и не выделяет осадков при длительной эксплуатации турбин.

ТП-30

Масло турбинное 30 вырабатывается на основе минеральных базовых масел, куда добавляются присадки для улучшения эксплуатационных свойств состава. ТП-30 специалисты советуют использовать в турбинах любого типа, в том числе газовых и паровых. Причем эксплуатация масла доступна даже в суровых климатических условиях. Среди отличительных особенностей ТП-30 можно отметить отличную антиокислительную способность, хороший уровень минимальную кавитацию, отличную термическую стабильность.

Т-46

Турбинные масла Т-46 создаются из малосернистых беспарафинистых сортов нефти высокого качества без содержания присадок, за счет чего обеспечивается доступность его стоимости при сохранении всех эксплуатационных характеристик. Качественное сырье, используемое для производства, позволяет достигать определенного уровня вязкости для масла, что делает его очистку проще и удобнее. Использование данного состава целесообразно в судовых турбинах, паротурбинных агрегатах.

ТП-22С

Масло турбинное ТП-22С позволяет смазывать и охлаждать подшипники, вспомогательные механизмы паровых турбин, которые работают на высоких оборотах, а также его можно использовать как и уплотняющую среду в системах уплотнения и регулирования. Среди преимуществ данного масла можно выделить:

  • отличные эксплуатационные свойства за счет глубокоочищенной минеральной основы и эффективной композиции присадок;
  • отличные деэмульгирующие свойства;
  • превосходную стабильность против окисления;
  • высокий уровень вязкости;
  • минимальную кавитацию.

Применяется это масло в турбинах разного назначения - от паровых и газовых до газовых турбин электростанций.

ТП-22Б

Турбинное масло ТП-22Б вырабатывается из парафинистых сортов нефти, причем очистка выполняется селективными растворителями. Благодаря присадкам достигается хороший уровень стойкости к коррозии, окислению. Если сравнивать ТП-22Б с ТП-22С, то первое меньше образует осадка при работе оборудования, оно более долговечно в использовании. Его особенность в отсутствии аналогов среди отечественных сортов турбинных масел.

"ЛукОйл Торнадо Т"

В данной серии предлагается большой выбор турбинных масел высокого качества. В их основе лежат вырабатываемые по специальной синтетической технологии с использованием присадок беззольного типа высокой эффективности. Масла разрабатываются в соответствии с новейшими требованиями к составам подобного рода. Их целесообразно применять в паровых и с редукторами и без них. Отличные антиокислительные, антикоррозионные и противоизносные свойства способствуют минимальному образованию отложений. Масло специально адаптировано под современные высокопроизводительные турбинные установки.

Особенности состава

Современные турбинные масла создаются на основе специальных парафиновых сортов нефти, обладающих определенными вязкостно-температурными характеристиками, а также антиоксидантов и ингибиторов коррозии. Если масло планируется использовать на турбинах с зубчатыми коробками передач, то они должны обладать высокой несущей способностью, а для этого в состав добавляются противозадирные присадки.

Для получения базовых масел используется экстракция или гидрирование, а очистка и гидроочистка под высоким давлением позволяют достичь таких характеристик турбинного масла, как окислительная стабильность, водоотделение, деаэрация, которые, в свою очередь, сказываются на ценообразовании.

Для турбин разного типа

Для современных газовых и паровых турбин используются масла турбинные (ГОСТ ISO 6743-5 и ISO/CD 8068). Классификацию этих материалов, в зависимости от общего назначения, можно представить следующим образом:

  • Для паровых турбин (в том числе и с зубчатыми передачами при нормальных условиях нагрузки). В основе этих смазочных материалов лежат очищенные минеральные масла, дополненные антиоксидантами и ингибиторами коррозии. Применение масел целесообразно на индустриальных и судовых приводах.
  • Для паровых турбин с высокой несущей способностью. Такие турбинные масла дополнительно обладают противозадирными характеристиками, что обеспечивает смазку зубчатых передач при эксплуатации оборудования.
  • Для газовых турбин: такие масла производятся из очищенных минеральных составов, куда добавляются антиоксиданты,

Особенности очистки

Внутренние детали любого механизма со временем приходят в негодность из-за естественного износа. Соответственно, в самом смазочном масле также по мере его эксплуатации скапливаются механические примеси в виде воды, пыли, стружки, начнет образовываться абразив. Сделать эксплуатацию оборудования полноценной и более длительной можно постоянным контролем и очисткой турбинного масла для устранения из него механических включений.

Отметим, что современные масла дают возможность оптимизировать и увеличивать эффективность производственного процесса за счет полноценной защиты деталей и комплектующих оборудования. Качественная очистка турбинного масла - залог надежной работы турбоагрегатов в течение длительного срока без отказов и неисправностей самого оборудования. Если использовать некачественное масло, функциональная надежность оборудования будет под вопросом, а значит, произойдет его преждевременный износ.

Восстановленное после очистки масло можно использовать повторно. Именно поэтому целесообразно использовать методы непрерывной очистки, так как в этом случае можно увеличить срок работы масла, не нуждаясь в его перезаливке. Турбинные масла можно очищать разными методами: физическими, физико-химическими и химическими. Опишем все методы подробнее.

Физические

Данные методы очищают турбинное масло без нарушения его химических свойств. В числе самых популярных методов очистки:

  • Отстаивание: масло очищается от шлама, воды, механических примесей через специальные баки-отстойники. В качестве отстойника может использоваться масляный бак. Недостаток метода в малой производительности, что объясняется длительным этапом расслаивания.
  • Сепарация: очистка масла от воды и примесей выполняется в специальном барабане сепаратора центробежных сил.
  • Фильтрация: при данном методе масло очищается от примесей, которые в нем не могут раствориться. Для этого масло пропускается через пористую фильтровальную поверхность через картон, войлок или мешковину.
  • Гидродинамическая очистка: этот метод позволяет очистить не только масло, но и все оборудование. При работе остается целостной масляная пленка между металлом и маслом, на металлических поверхностях не появляется коррозия.

Физико-химические

При использовании данных методов очистки химический состав масла меняется, но незначительно. Данные методы предполагают:

  • Адсорбционную очистку, когда содержащиеся в масле вещества поглощаются твердыми высокопористыми материалами - адсорбентами. В этом качестве используются окись алюминия, эмали с отбеливающим эффектом, силикагель.
  • Промывку конденсатом: данный метод применяется, если в составе масла есть низкомолекулярные кислоты, растворимые в воде. После промывки улучшаются эксплуатационные свойства масла.

Химические методы

Очистка химическими методами предполагает использование кислот, щелочей. Щелочная очистка используется, если масло сильно изношено, а остальные методы очистки не действуют. Щелочь влияет на нейтрализацию органических кислот, остатков серной кислоты, удаление эфиров и других соединений. Очистка выполняется в специальном сепараторе под воздействием горячего конденсата.

Самый эффективный способ очистки турбинных масел - использование комбинированных агрегатов. Они предполагают проведение очистки по специально проработанной схеме. В промышленных условиях можно использовать универсальные установки, благодаря которым очистка может вестись отдельным методом. Какой бы метод очистки ни применялся, важно, чтобы конечное качество масла было на высоте. А это повысит срок стабильной эксплуатации самого оборудования.

Турбинные масла представляют собой смазочные масла с широкой областью применения – кроме использования в качестве смазочного материала для подшипников и редукторов в паровых турбинах и гидротурбинах, качестве рабочего масла тормозной системы, они также применяются в компрессорах, вентиляторах и пр. механизмах. Как правило, турбинные масла состоят из базовых парафиновых масел высокой степени очистки, к которым добавляются различные комбинации присадок, придающие маслам необходимые эксплуатационные характеристики.

Существует 2 вида турбинных масел – с присадками и без присадок, классифицируются японской системой промышленных стандартов по стандарту K 2213.

9-1 Необходимые свойства, которыми должны обладать турбинные масла

У турбинных масел достаточно широкое предназначение, и, поскольку они должны выполнять роль смазочного материала для подшипников, зубчатых передач, компрессоров и пр. механизмов при различных условиях, к ним предъявляются следующие требования:

(1) Обладать степенью вязкости, соответствующей (подходящей) температурным условиям эксплуатации

(2) Обладать антиоксидантными свойствами и стабильностью к термоокислению

(3) Обладать высокими антикоррозийными свойствами

(4) Обладать высокой деэмульгирующей способностью и обеспечивать хорошую водоотделяющую способность

(5) Обладать высокими противоизносными свойствами

(6) Обладать высокими антипенными свойствами.


  1. Степень вязкости
Так как обычно смазочный процесс в турбинах происходит при высоких скоростях, необходима та или иная степень вязкости масла (большая или меньшая), соответствующая температуре эксплуатации. Как правило, для прямоприводных турбин, турбовентиляторов, турбинных насосов, гидравлики предназначается турбинное масло с классом вязкости ISOVG 32, для редукторов, гидротурбин, закрытых зубчатых передач, поршневых компрессоров подходит масло класса вязкости ISOVG 46–68, а для таких же, только крупногабаритных агрегатов подходит турбинное масло класса вязкости ISOVG 83.

  1. Стабильность к термоокислению и антиоксидантные свойства
Температура поверхности подшипников в гидротурбинах по сравнению с паровыми турбинами, невысокая, в паровых же турбинах, вследствие применения горячего пара высокого давления, температура подшипника может превышать 100°С. Однако, из-за того, что турбинное масло используется в длительном непрерывном режиме, оно подвергается термоокислению, и, кроме этого, из-за воздействия воды, смешивания с воздухом, контакта с металлическими поверхностями одновременно также происходит и процесс окисления, поэтому турбинные масла в особенности должны обладать антиоксидантными свойствами.

  1. Антикоррозийные качества
Из-за попадания воды в турбинах часто образуется ржавчина. Базовые масла высокой степени очистки отличаются низкой сопротивляющейся способностью к образованию ржавчины, поэтому присадки, предотвращающие образование ржавчины, придают турбинным маслам антикоррозийные свойства.

  1. Деэмульгирующая способность
Если турбинное масло обладает плохими водотделяющими свойствами, то происходит износ подшипников, повышение температуры (нагрев), ускоряется окисление и пр.

Обычно базовые масла высокой степени очистки обладают хорошими деэмульгирующими способностями, однако при добавлении антикоррозийной присадки способность к деэмульгированию понижается, поэтому очень важно соблюдать нужный баланс.


  1. Противоизносные свойства
Главный турбинный вал вращается с большой скоростью в течение длительного времени, поэтому необходимо, чтобы масло отличалось высокими противоизносными свойствами. К тому же редукторный механизм турбины, понижая высокую скорость вращения главного вала, работает с высокой выходной мощностью, поэтому наряду с главным валом также нуждается в защите от износа. Масла с противоизносными характеристиками обеспечивают точность работы механизмов.

  1. Антипенные свойства
Современные турбинные масла эксплуатируются в условиях высоких скоростей в режиме принудительной циркуляционной смазки. В силу этих обстоятельств легко происходит соединение масла с воздухом, и существуют условия для образования воздушной пены.

Воздушная пена, являясь причиной окисления масла, также наносит вред процессу смазки и приводит к избыточным потерям масла из масляного бака, поэтому важно и необходимо, чтобы масло обладало антипенными свойствами. И обычно в качестве такой присадки добавляется гаситель пены силиконового происхождения, который быстро гасит образующуюся пену.


    1. Смазка турбины

  1. Смазка подшипников
Подшипники, применяющиеся в турбинах, несут небольшую нагрузку, но они вращаются с очень высокой скоростью – свыше 3,500 оборотов в минуту. Следовательно, они нуждаются в смазке, снижающей трение. В больших турбинах применяется в основном метод принудительной циркуляционной смазки, а в средних и малых турбинах используется в основном метод кольцевой смазки. В крупных турбинах за счет водяного охлаждения температура масла поддерживается ниже 70 °С, а в средних и малых турбинах используется воздушное охлаждение, поэтому температура масла в них достигает 110-120 ° С.

Так как турбины эксплуатируются в течение длительного времени, то этот фактор усиливает окисление масла.


  1. Смазка редукторного механизма
Процесс снижения скорости вращения турбины при помощи редукторного механизма происходит с высокой выходной мощностью. Существует два вида редукторов – с зубчатой передачей и электроприводной.

На судах преимущественно применяются турбины, оборудованные редукторами с зубчатыми передачами, для смазки главных (ведущих) подшипников турбины, редуктора, подшипников, наружных колец подшипников и зубчатых колес используется одно и то же турбинное масло с присадками.

Из-за того, что по мере увеличения мощности судовых турбин и с уменьшением их размеров нагрузка на редукторную передачу увеличилась и стала достаточно высокой, возникла необходимость добавить дополнительно турбинным маслам присадку «экстремальных нагрузок» и масла с такими присадками обозначаются как «турбинное масло для экстремальных нагрузок» (EXTREME PRESSURE)


  1. Регулятор частоты вращения турбины
Регулятор частоты вращения турбины работает от давления в механизме регулирования скорости и выходной мощности турбины, турбинное масло используется как рабочее. Следовательно, так как существует необходимость быстрой и реальной передачи давления масла, турбинное масло должно отличаться хорошими характеристиками вязкости (коэффициент вязкости, текучесть при низких температурах).

    1. Ухудшение параметров турбинного масла (разложение масла) и нормы его замены
Ранее уже упоминалось о негативном влиянии на свойства турбинных масел таких факторов, как высокая температура эксплуатации масла, воздух, вода, контакт с металлами, посторонние примеси и пр. Турбинные агрегаты последнего поколения поддерживают при помощи системы охлаждения температуру около 70°С, увеличилось использование турбин в длительном непрерывном режиме.

Следовательно, процесс разложения масла происходит постепенно, шаг за шагом. Этот процесс выражается в изменении цвета от красного к красно-коричневому и затем к черному, и появлением раздражающего запаха. На этой стадии увеличивается кислотное число, образуются шламы, и понижаются антипенные, антикоррозийные, деэмульгирующие свойства.

Так как в некоторой степени можно контролировать процесс разложения масла, уделяя внимание тех. состоянию системы смазки в обычном рабочем режиме турбины, ниже указываются несколько моментов, на которые нужно обращать внимание при периодических проверках состояния системы смазки.


  1. Масляный охладитель
Эффективность охлаждения масла снижается по причине накопления шлама на внутренней поверхности охладительных труб либо загрязнений и осадков, образующихся на поверхности труб со стороны водяного охлаждения. В результате этого повышается температура масла, что становится причиной ускорения окисления, поэтому очень важно содержать в порядке охладитель масла

  1. Наличие в системе смазки посторонних (чужеродных) веществ.
Попадание посторонних веществ в систему смазки препятствует нормальной циркуляции масла, в зависимости от свойств и структуры этих веществ ускоряется процесс износа и образование шламов, также ухудшается процесс водоотделения. Мелкие частицы в виде песка, а также частицы ржавчины становятся причиной преждевременной изнашиваемости подшипников, химических соединения с металлами (особенно с ржавчиной) влияют на ускорение окисления масла. Твердые частицы создают помехи в нормальной работе регулятора частоты вращения турбины.

Перед заливкой масла, путем промывки или продувки необходимо удалять посторонние вещества, также важно предпринимать меры по защите от проникновения посторонних веществ снаружи через воздушную вентиляционную систему.

Конечно, невозможно совсем избежать попадания в систему смазки посторонних веществ, поэтому важно регулярно извлекать из системы смазки пробные образцы, либо производить регулярный техосмотр фильтров и моющего оборудования, а также важно производить чистку системы.


  1. Вентиляция
Когда минеральное масло окисляется, то, как правило, образуются органические кислоты, и испарения некоторых видов этих кислот ускоряют процесс коррозии. Особенно подвержены этому влиянию металлические поверхности, располагающиеся над уровнем масла, поэтому необходимо выпускать образующиеся пары наружу за пределы системы смазки через отверстия воздушной вентиляции.

  1. Технические факторы
Долговечность и эксплуатационные качества турбинных масел могут колебаться в зависимости от технических факторов, конструктивных особенностей турбин в которых они применяются.

Например, если во внутреннюю насосную часть системы поступает воздух, то масло начинает пениться, при недостаточной герметичности уплотнителей происходит соединение с водой и паром, если масляный трубопровод соприкасается с участками с высокой температурой, то температура масла будет повышаться, если концы труб, по которым возвращается масло находятся выше уровня масла, то происходит примешивание воздуха, и любой из этих факторов ускоряет ухудшение эксплуатационных параметров турбинных масел, поэтому расположению трубопровода и конструкции турбины нужно уделять достаточное внимание.


  1. Сроки замены турбинных масел
Относительно сроков замены турбинных масел не существует четких и определенных предписаний, но обычно за показатели, указывающие на необходимость замены масла, принимают следующие параметры:

ОБЩИЕ СВЕДЕНИЯ

:

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . жидкое

Внешний вид. . . . . . . . вязкая жидкость от светло-желтого до темно-коричневого цвета.

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . специфический.

Применение: для смазывания подшипников и вспомогательных механизмов турбоагрегатов (паровых и газовых турбин, турбокомпрессорных машин, гидротурбин), а также для работы в системах регулирования этих машин в качестве гидравлической жидкости.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 20 °С, кг/м3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860-900

Температура застывания при давлении 101,3 кПа, °С:

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 15

Марка Т30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Марка Т46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Удельная теплота сгорания, кДж/кг. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41870

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не растворимо.

Реакционная способность: растворяется в растворителях, масла - химически инертны.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Регистрационный номер по CAS для масел минеральных нефтяных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8042-47-5

Класс опасности в воздухе рабочей зоны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р. в воздухе рабочей зоны, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Код вещества, загрязняющего атмосферный воздух. . . . . . . . . . . . . . . . 2735

ОБУВ в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,05

Воздействие на людей: малотоксичное. Хроническое отравление может привести к заболеваниям кожи: масляный фолликулит, токсические меланодермии, экземы, кератозы, папилломы.

Меры предосторожности: в помещениях запрещается обращение с открытым огнем. Электрооборудование, искусственное освещение должны быть во взрывобезопасном исполнении. Не допускается использовать инструменты, дающие искру при ударе. Помещение должно быть оснащено вентиляцией.

Средства защиты: следует применять индивидуальные средства защиты: респираторы, резиновые перчатки, спецодежду, фартук. Не допускать попадания препарата внутрь организма.

Методы перевода вещества в безвредное состояние: при разливе масла необходимо собрать его в отдельную тару, место разлива засыпать песком с последующим удалением массы песка, пропитанного маслом.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . . . . . . . . . . трудногорючая жидкость

Температура вспышки, °С

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Марка Т57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Температура самовоспламенения, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Средства пожаротушения: . . . . . . . воздушно-механическая пена, порошки.

Эксплуатация турбинных масел со временем приводит к его старению. Это неизбежный процесс, ведь данным маслам приходится работать в достаточно тяжелых условиях, поскольку масляные системы турбогенераторов находятся под постоянным воздействием целого ряда неблагоприятных факторов.

Факторы, воздействующие на турбинное масло

Влияние высоких температур

При нагреве масла в присутствии воздуха происходит усиленное окисление нефтепродукта. Параллельно изменяются также и другие характеристики масел. Испарение легкокипящих фракций приводит к увеличению вязкости, уменьшению температуры вспышки, ухудшению деэмульсионной способности и т.д. Наибольший нагрев турбинных масел наблюдается в подшипниках турбины (от 35-40 до 50-55 ºС). Нагрев масла происходит за счет трения в масляном слое подшипника и частично за счет передачи тепла по валу от более нагретых частей.

Чтобы получить представление о текущей температуре подшипника производят замер температуры масла в сливной линии. Но даже относительно низкая температура не исключает местного перегрева масла за счет несовершенства конструкции подшипника, его некачественного изготовления или неправильной сборки. Местные перегревы приводят к ускоренному старению турбинных масел, что является следствием резкого возрастания окисляемости из-за увеличения температуры выше 75-80 ºС.

Также масло может нагреваться в картерах подшипников и системах регулирования.

Разбрызгивание масла

К разбрызгиванию масла приводит наличие в составе паровых турбин таких составных частей, как зубчатые колеса, муфты, уступы, гребни на валу, заточки вала, регулятор скорости и т.п. При этом масло распыляется в кратерах подшипников и колонках центробежных регуляторов скорости. Такой нефтепродукт имеет большую площадь контакта с воздухом, который практически всегда присутствует в картере. В результате происходит смешивание масла с кислородом и последующее окисление нефтепродукта. Интенсифицирует данный процесс большая скорость частиц турбинного масла относительно воздуха.

Воздух в картерах подшипников появляется из-за несколько пониженного местного давления за счет подсасывания в зазор по валу.

Наибольшая интенсивность разбрызгивания масла наблюдается у подвижных муфт с принудительной смазкой. Поэтому с целью уменьшения окисляемости масел муфты окружают металлическими кожухами, которые ограничивают разбрызгивание масла.

Влияние воздуха, содержащегося в масле

Воздух может пребывать в турбинном масле в виде пузырьков различного размера, а также в растворенном состоянии. Попадает он туда за счет захвата в местах наиболее интенсивного перемешивания масла с воздухом, а также в сливных маслопроводах, где не наблюдается заполнение маслом всего сечения трубы.

При прохождении воздухсодержащего масла через главный масляный насос воздушные пузырьки быстро сжимаются. В крупных образованиях температура резко возрастает. Поскольку сжатие происходит очень быстро, воздух не успевает отдать тепло окружающей среде – процесс является, по сути, адиабатическим. Тепла выделяется очень мало и сам процесс выделения длится быстро. Однако, даже этого достаточно для существенного ускорения процесса окисления турбинного масла. После прохождения через насос происходит постепенное растворение сжатых пузырьков, а также переход в масло примесей, содержащихся в воздухе – пыли, золы, водяного пара и т.п. В результате нефтепродукт загрязняется и обводняется.

Старения масла из-за содержащегося в нем воздуха наиболее заметно в крупных турбинах, что объясняется большим давлением масла после главного маслонасоса.

Влияние воды и конденсационного пара

В турбинах старых конструкций основным источником обводнения масла является пар, выбивающийся из лабиринтовых уплотнений и подсасывающийся в корпус подшипника. Также обводнение может возникать вследствие неисправности парозапорной арматуры вспомогательного турбомаслонасоса. Также вода может попадать в масло из воздуха в результате конденсации и через маслоохладители.

Наиболее опасным считается обводнение масла после контакта с горячим паром. При этом нефтепродукт не только вбирает влагу, но еще и нагревается, что приводит к ускорению процесса его старения.

Наличие воды способствует образованию шлама. При попадании в линию смазки подшипников он может закупоривать отверстия в дозирующих шайбах, установленных на нагнетательных линиях. Это чревато перегревом или даже выплавлением подшипника. Проникновение шлама в систему регулирования нарушает нормальную работу золотников, букс и других элементов турбины.

Также в результате контакта турбинного масла с горячим паром образуется масловодяная эмульсия. Она может попадать в систему смазки и регулирования, резко ухудшая качество их работы.

Влияние металлических поверхностей

При циркуляции по маслосистеме турбинное масло практически всегда контактирует с различными металлами: сталью, чугуном, баббитом, бронзой, что также способствует окислению. При воздействии на металлические поверхности кислот образуются продукты коррозии, которые могут попадать в масло. Также некоторые металлы могут обладать каталитическим воздействием на процессы окисления нефтепродуктов.

Перечисленные выше факторы как по отдельности, так и все вместе вызывают старение турбинных масел. Под старением обычно понимается изменение физико-химических свойств в сторону ухудшения эксплуатационных качеств.

Признаками старения турбинных масел в процессе эксплуатации можно считать:

  1. увеличение вязкости;
  2. увеличение кислотного числа;
  3. снижение температуры вспышки;
  4. появление кислотной реакции водной вытяжки;
  5. появление шлама и механических примесей;
  6. уменьшение прозрачности.

Но наличие даже всех перечисленных признаков еще не означает, что турбинное масло не годно к эксплуатации.

Для использования в паровых турбинах допускаются нефтепродукты, отвечающие следующим требованиям :

  1. кислотное число не превыша­ет 0,5 мг КОН на 1 г масла;
  2. вязкость масла не отличается от первоначальной более чем на 25%;
  3. температура вспышки понизи­лась не более чем на 10°С от пер­воначальной;
  4. реакция водной вытяжки – нейтральная;
  5. масло прозрачно и не содер­жит воды и шлама.

Если один из параметров или характеристика масла не соответствует нормированному значению и не подлежит восстановлению, то такой продукт нужно заменить в кратчайшие сроки.

Установки для очистки турбинных масел

Как мы убедились выше, старение турбинного масла может привести к целому ряду негативных последствий. Выход из строя турбин, их простаивание и ремонт обходятся очень дорого. Да и само турбинное масло – продукт недешевый. Поэтому целесообразно вкладывать деньги в мероприятия, направленные на замедление процессов старения и восстановления свойств масел, уже побывавших в эксплуатации.

Установка СММ-4Т

На практике для решения таких задач компании GlobeCore . С помощью данного оборудования проводится комплексная очистка турбинных масел от воды и различных примесей. Системы очистки могут работать в режимах фильтрации и нагрева, а также фильтрации, осушки и дегазации масла. Результатом обработки является улучшение эксплуатационных характеристик турбинных масел до нормированных значений и существенное продление срока их службы.

На эксплуатируемом объекте основными взрывопожароопасными, вредными и токсичными веществами являются: газ, этилмеркаптан (одорант), метанол.

Обслуживающий персонал, работая на действующем объекте, должен знать состав, основные свойства газов и его соединений. Действие вредных веществ, применяемых в производстве, на организм человека зависит от токсических свойств вещества, его концентрации и продолжительности воздействия. Профессиональные отравления и заболевания возможны только в том случае, если концентрация токсичного вещества в воздухе рабочей зоны превышает определенный предел.

Таблица 6 - Сведения об опасных веществах на объектах ООО "Газпром трансгаз Чайковский"

№Наименование опасного веществаКласс опасностиХарактер воздействия на человека1Газ природный (свыше 90% -метан) 4Природный газ относится к воспламеняющимся газам (приложение 2 к ФЗ-116 от 21.07.97) Главные опасности для человека связаны: с возможной утечкой и воспламенением газа с последующим воздействием тепловой радиации на людей; с высоким давлением газа в трубопроводах и сосудах, при разгерметизации которых возможно осколочное поражение людей; с удушьем при 15-16%-м снижении содержания кислорода в воздухе, вытесненного газом.2Масло турбинное Тп-22с4Масло турбинное относится к горючим жидкостям, используемым в технологическом процессе (приложение 2 к ФЗ-116 от 21.07.97). Главные опасности связаны: с возможной утечкой и воспламенением масла с последующим развитием пожара и воздействием тепловой радиации на людей; c возможностью попадания масла на кожу, в глаза, что вызывает их раздражение.3Одорант природного газа, поступающего в систему коммунального распределения после ГРС (этилмеркаптан)2Одорант относится к токсичным веществам (приложение 2 к ФЗ-116 от 21.07.97). В зависимости от количества воздействующего на человека одоранта и индивидуальных особенностей организма возможны: головная боль, тошнота, судороги, паралич, остановка дыхания, смерть4Метанол (средство предотвращения гидратообразования)3Метанол относится к токсичным веществам (приложение 2 к ФЗ-116 от 21.07.97). 5-10 гр. приема метанола внутрь вызывает тяжелое отравление, сопровождающееся головной болью, головокружением, тошнотой, болью в желудке, общей слабостью, мельканием в глазах или потерей зрения в тяжелых случаях. 30 г является смертельной дозой

Природный газ - бесцветная смесь легких природных газов, легче воздуха, не обладает ощутимым запахом (для придания запаха добавляют одорант). Пределы взрываемости 5,0... 15,0 % объемных. ПДК в воздухе производственных помещений 0,7 % объемных, в пересчете на углеводороды 300 мг/м3. Температура самовоспламенения 650°С.

При больших концентрациях (более 10 %) действует удушающе, так как возникает кислородная недостаточность, в результате повышения концентрации газа (метана) до уровня не ниже 12 % переносится без заметного действия, до 14 % приводит к легкому физиологическому расстройству, до 16 % вызывает тяжелое физиологическое действие, до 20 % - уже смертельно опасное удушье.

Этилмеркаптан (одорант) - употребляются для придания запаха газам, транспортируемым по магистральному газопроводу, даже в небольших концентрациях вызывают головную боль и тошноту, а в высоких концентрациях действуют на организм подобно сероводороду в значительной концентрации токсичен, действует на центральную нервную систему, вызывая судороги, паралич и смерть.. ПДК этилмеркаптана в воздухе рабочей зоны 1 мг/м3.

Одорант легко испаряется и горит. Отравление возможно при вдыхании паров, всасывании через кожу. По своей токсичности он напоминает сероводород.

Концентрация паров этилмеркаптана 0,3 мг/м3 - является предельной. Пары этилмеркаптана в определенной смеси с воздухом образует взрывчатую смесь. Пределы взрываемости 2,8 - 18,2%.

Метан - в чистом виде не токсичен, но при содержании его в воздухе 20 % и более наблюдается явление удушья, потеря сознания и смерть. Предельные углеводороды с увеличением молекулярного веса проявляют больше токсичных свойств. Так пропан вызывает головокружение при двухминутном пребывании в атмосфере, содержащей 10 % пропана. ПДК (предельно допустимая концентрация) равна 300 мг/м3.

Этилмеркаптан взаимодействует с железом и его окислами, образуя склонные к самовозгоранию меркантиды железа (пирофорные соединения).

Чтобы обеспечить безопасные условия для выполнения различных видов строительно-монтажных работ и исключить травматизм, рабочие и инженерно - технический персонал обязаны хорошо знать и соблюдать основные правила техники безопасности.

В связи с этим, рабочие и инженерно - технический персонал, занятые на строительстве или ремонте трубопроводов, проходят обучение по своей специальности и правилам техники безопасности. Проверку знаний оформляют соответствующими документами согласно действующим отраслевым положениям о порядке проверки знаний правил, норм и инструкций по охране труда.

До начала работ по ремонту газопроводов организация, эксплуатирующая газопровод, обязана:

дать письменное разрешение на производство работ по ремонту газопровода;

очистить полость газопровода от конденсата и отложений;

выявить и обозначить места утечки газа;

отключить газопровод от действующей магистрали;

выявить и обозначить места залегания газопровода на глубине менее 40 см;

обеспечить связью ремонтно-строительные участки с диспетчерской, ближайшей компрессорной станцией, ближайшим домом обходчика и другими необходимыми пунктами;

обеспечить техническую и пожарную безопасность при ремонтных работах.

После отключения и снятия давления в газопроводе производятся планировочные и вскрышные работы.

Вскрытие газопровода производят вскрышным экскаватором с соблюдением следующих условий безопасности:

вскрытие газопровода необходимо вести на 15-20 см ниже нижней образующей, что облегчает строповку трубы при ее подъеме из траншеи;

запрещается производство других работ и нахождение людей в зоне действия рабочего органа вскрышного экскаватора.

Расположение механизмов и других машин около траншеи должно быть за призмой обрушения грунта.

Огневые работы на газопроводе следует производить в соответствии с требованиями Типовой инструкции по безопасному ведению огневых работ на газовых объектах Мингазпрома СССР, 1988.

К электросварочным работам допускаются электросварщики, прошедшие установленную аттестацию и имеющие соответствующие удостоверения. При работе с очистной машиной необходимо следить за тем, чтобы на ней был установлен пенный или углекислый огнетушитель.